晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近。忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。渔人甚异之,复前行,欲穷其林。 林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田、美池、桑竹之属。阡陌交通,鸡犬相闻。其中往来种作,男女衣着,悉如外人。黄发垂髫,并怡然自乐。 见渔人,乃大惊,问所从来。具答之。便要还家,设酒杀鸡作食。村中闻有此人,咸来问讯。自云先世避秦时乱,率妻子邑人来此绝境,不复出焉,遂与外人间隔。问今是何世,乃不知有汉,无论魏晋。此人一一为具言所闻,皆叹惋。余人各复延至其家,皆出酒食。停数日,辞去。此中人语云:“不足为外人道也。”(间隔 一作:隔绝) 既出,得其船,便扶向路,处处志之。及郡下,诣太守,说如此。太守即遣人随其往,寻向所志,遂迷,不复得路。 南阳刘子骥,高尚士也,闻之,欣然规往。未果,寻病终。后遂无问津者。
|
Server : Apache System : Linux srv.rainic.com 4.18.0-553.47.1.el8_10.x86_64 #1 SMP Wed Apr 2 05:45:37 EDT 2025 x86_64 User : rainic ( 1014) PHP Version : 7.4.33 Disable Function : exec,passthru,shell_exec,system Directory : /home/akaindir/www/crm/libraries/PHPExcel/PHPExcel/Shared/trend/ |
Upload File : |
<?php
/**
* PHPExcel
*
* Copyright (c) 2006 - 2012 PHPExcel
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* @category PHPExcel
* @package PHPExcel_Shared_Trend
* @copyright Copyright (c) 2006 - 2012 PHPExcel (http://www.codeplex.com/PHPExcel)
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
* @version 1.7.7, 2012-05-19
*/
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
/**
* PHPExcel_Power_Best_Fit
*
* @category PHPExcel
* @package PHPExcel_Shared_Trend
* @copyright Copyright (c) 2006 - 2012 PHPExcel (http://www.codeplex.com/PHPExcel)
*/
class PHPExcel_Power_Best_Fit extends PHPExcel_Best_Fit
{
/**
* Algorithm type to use for best-fit
* (Name of this trend class)
*
* @var string
**/
protected $_bestFitType = 'power';
/**
* Return the Y-Value for a specified value of X
*
* @param float $xValue X-Value
* @return float Y-Value
**/
public function getValueOfYForX($xValue) {
return $this->getIntersect() * pow(($xValue - $this->_Xoffset),$this->getSlope());
} // function getValueOfYForX()
/**
* Return the X-Value for a specified value of Y
*
* @param float $yValue Y-Value
* @return float X-Value
**/
public function getValueOfXForY($yValue) {
return pow((($yValue + $this->_Yoffset) / $this->getIntersect()),(1 / $this->getSlope()));
} // function getValueOfXForY()
/**
* Return the Equation of the best-fit line
*
* @param int $dp Number of places of decimal precision to display
* @return string
**/
public function getEquation($dp=0) {
$slope = $this->getSlope($dp);
$intersect = $this->getIntersect($dp);
return 'Y = '.$intersect.' * X^'.$slope;
} // function getEquation()
/**
* Return the Value of X where it intersects Y = 0
*
* @param int $dp Number of places of decimal precision to display
* @return string
**/
public function getIntersect($dp=0) {
if ($dp != 0) {
return round(exp($this->_intersect),$dp);
}
return exp($this->_intersect);
} // function getIntersect()
/**
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
*
* @param float[] $yValues The set of Y-values for this regression
* @param float[] $xValues The set of X-values for this regression
* @param boolean $const
*/
private function _power_regression($yValues, $xValues, $const) {
foreach($xValues as &$value) {
if ($value < 0.0) {
$value = 0 - log(abs($value));
} elseif ($value > 0.0) {
$value = log($value);
}
}
unset($value);
foreach($yValues as &$value) {
if ($value < 0.0) {
$value = 0 - log(abs($value));
} elseif ($value > 0.0) {
$value = log($value);
}
}
unset($value);
$this->_leastSquareFit($yValues, $xValues, $const);
} // function _power_regression()
/**
* Define the regression and calculate the goodness of fit for a set of X and Y data values
*
* @param float[] $yValues The set of Y-values for this regression
* @param float[] $xValues The set of X-values for this regression
* @param boolean $const
*/
function __construct($yValues, $xValues=array(), $const=True) {
if (parent::__construct($yValues, $xValues) !== False) {
$this->_power_regression($yValues, $xValues, $const);
}
} // function __construct()
} // class powerBestFit