晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近。忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。渔人甚异之,复前行,欲穷其林。   林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田、美池、桑竹之属。阡陌交通,鸡犬相闻。其中往来种作,男女衣着,悉如外人。黄发垂髫,并怡然自乐。   见渔人,乃大惊,问所从来。具答之。便要还家,设酒杀鸡作食。村中闻有此人,咸来问讯。自云先世避秦时乱,率妻子邑人来此绝境,不复出焉,遂与外人间隔。问今是何世,乃不知有汉,无论魏晋。此人一一为具言所闻,皆叹惋。余人各复延至其家,皆出酒食。停数日,辞去。此中人语云:“不足为外人道也。”(间隔 一作:隔绝)   既出,得其船,便扶向路,处处志之。及郡下,诣太守,说如此。太守即遣人随其往,寻向所志,遂迷,不复得路。   南阳刘子骥,高尚士也,闻之,欣然规往。未果,寻病终。后遂无问津者。 .
Prv8 Shell
Server : Apache
System : Linux srv.rainic.com 4.18.0-553.47.1.el8_10.x86_64 #1 SMP Wed Apr 2 05:45:37 EDT 2025 x86_64
User : rainic ( 1014)
PHP Version : 7.4.33
Disable Function : exec,passthru,shell_exec,system
Directory :  /usr/lib64/python2.7/Demo/scripts/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/lib64/python2.7/Demo/scripts/queens.py
#! /usr/bin/python2.7

"""N queens problem.

The (well-known) problem is due to Niklaus Wirth.

This solution is inspired by Dijkstra (Structured Programming).  It is
a classic recursive backtracking approach.

"""

N = 8                                   # Default; command line overrides

class Queens:

    def __init__(self, n=N):
        self.n = n
        self.reset()

    def reset(self):
        n = self.n
        self.y = [None] * n             # Where is the queen in column x
        self.row = [0] * n              # Is row[y] safe?
        self.up = [0] * (2*n-1)         # Is upward diagonal[x-y] safe?
        self.down = [0] * (2*n-1)       # Is downward diagonal[x+y] safe?
        self.nfound = 0                 # Instrumentation

    def solve(self, x=0):               # Recursive solver
        for y in range(self.n):
            if self.safe(x, y):
                self.place(x, y)
                if x+1 == self.n:
                    self.display()
                else:
                    self.solve(x+1)
                self.remove(x, y)

    def safe(self, x, y):
        return not self.row[y] and not self.up[x-y] and not self.down[x+y]

    def place(self, x, y):
        self.y[x] = y
        self.row[y] = 1
        self.up[x-y] = 1
        self.down[x+y] = 1

    def remove(self, x, y):
        self.y[x] = None
        self.row[y] = 0
        self.up[x-y] = 0
        self.down[x+y] = 0

    silent = 0                          # If true, count solutions only

    def display(self):
        self.nfound = self.nfound + 1
        if self.silent:
            return
        print '+-' + '--'*self.n + '+'
        for y in range(self.n-1, -1, -1):
            print '|',
            for x in range(self.n):
                if self.y[x] == y:
                    print "Q",
                else:
                    print ".",
            print '|'
        print '+-' + '--'*self.n + '+'

def main():
    import sys
    silent = 0
    n = N
    if sys.argv[1:2] == ['-n']:
        silent = 1
        del sys.argv[1]
    if sys.argv[1:]:
        n = int(sys.argv[1])
    q = Queens(n)
    q.silent = silent
    q.solve()
    print "Found", q.nfound, "solutions."

if __name__ == "__main__":
    main()

haha - 2025