晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近。忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。渔人甚异之,复前行,欲穷其林。 林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田、美池、桑竹之属。阡陌交通,鸡犬相闻。其中往来种作,男女衣着,悉如外人。黄发垂髫,并怡然自乐。 见渔人,乃大惊,问所从来。具答之。便要还家,设酒杀鸡作食。村中闻有此人,咸来问讯。自云先世避秦时乱,率妻子邑人来此绝境,不复出焉,遂与外人间隔。问今是何世,乃不知有汉,无论魏晋。此人一一为具言所闻,皆叹惋。余人各复延至其家,皆出酒食。停数日,辞去。此中人语云:“不足为外人道也。”(间隔 一作:隔绝) 既出,得其船,便扶向路,处处志之。及郡下,诣太守,说如此。太守即遣人随其往,寻向所志,遂迷,不复得路。 南阳刘子骥,高尚士也,闻之,欣然规往。未果,寻病终。后遂无问津者。
|
Server : Apache System : Linux srv.rainic.com 4.18.0-553.47.1.el8_10.x86_64 #1 SMP Wed Apr 2 05:45:37 EDT 2025 x86_64 User : rainic ( 1014) PHP Version : 7.4.33 Disable Function : exec,passthru,shell_exec,system Directory : /proc/thread-self/root/opt/imunify360/venv/lib64/python3.11/site-packages/charset_normalizer/ |
Upload File : |
import importlib
from codecs import IncrementalDecoder
from collections import Counter, OrderedDict
from functools import lru_cache
from typing import Dict, List, Optional, Tuple
from .assets import FREQUENCIES
from .constant import KO_NAMES, LANGUAGE_SUPPORTED_COUNT, TOO_SMALL_SEQUENCE, ZH_NAMES
from .md import is_suspiciously_successive_range
from .models import CoherenceMatches
from .utils import (
is_accentuated,
is_latin,
is_multi_byte_encoding,
is_unicode_range_secondary,
unicode_range,
)
def encoding_unicode_range(iana_name: str) -> List[str]:
"""
Return associated unicode ranges in a single byte code page.
"""
if is_multi_byte_encoding(iana_name):
raise IOError("Function not supported on multi-byte code page")
decoder = importlib.import_module("encodings.{}".format(iana_name)).IncrementalDecoder # type: ignore
p = decoder(errors="ignore") # type: IncrementalDecoder
seen_ranges = {} # type: Dict[str, int]
character_count = 0 # type: int
for i in range(0x40, 0xFF):
chunk = p.decode(bytes([i])) # type: str
if chunk:
character_range = unicode_range(chunk) # type: Optional[str]
if character_range is None:
continue
if is_unicode_range_secondary(character_range) is False:
if character_range not in seen_ranges:
seen_ranges[character_range] = 0
seen_ranges[character_range] += 1
character_count += 1
return sorted(
[
character_range
for character_range in seen_ranges
if seen_ranges[character_range] / character_count >= 0.15
]
)
def unicode_range_languages(primary_range: str) -> List[str]:
"""
Return inferred languages used with a unicode range.
"""
languages = [] # type: List[str]
for language, characters in FREQUENCIES.items():
for character in characters:
if unicode_range(character) == primary_range:
languages.append(language)
break
return languages
@lru_cache()
def encoding_languages(iana_name: str) -> List[str]:
"""
Single-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
unicode_ranges = encoding_unicode_range(iana_name) # type: List[str]
primary_range = None # type: Optional[str]
for specified_range in unicode_ranges:
if "Latin" not in specified_range:
primary_range = specified_range
break
if primary_range is None:
return ["Latin Based"]
return unicode_range_languages(primary_range)
@lru_cache()
def mb_encoding_languages(iana_name: str) -> List[str]:
"""
Multi-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
if (
iana_name.startswith("shift_")
or iana_name.startswith("iso2022_jp")
or iana_name.startswith("euc_j")
or iana_name == "cp932"
):
return ["Japanese"]
if iana_name.startswith("gb") or iana_name in ZH_NAMES:
return ["Chinese", "Classical Chinese"]
if iana_name.startswith("iso2022_kr") or iana_name in KO_NAMES:
return ["Korean"]
return []
@lru_cache(maxsize=LANGUAGE_SUPPORTED_COUNT)
def get_target_features(language: str) -> Tuple[bool, bool]:
"""
Determine main aspects from a supported language if it contains accents and if is pure Latin.
"""
target_have_accents = False # type: bool
target_pure_latin = True # type: bool
for character in FREQUENCIES[language]:
if not target_have_accents and is_accentuated(character):
target_have_accents = True
if target_pure_latin and is_latin(character) is False:
target_pure_latin = False
return target_have_accents, target_pure_latin
def alphabet_languages(
characters: List[str], ignore_non_latin: bool = False
) -> List[str]:
"""
Return associated languages associated to given characters.
"""
languages = [] # type: List[Tuple[str, float]]
source_have_accents = any(is_accentuated(character) for character in characters)
for language, language_characters in FREQUENCIES.items():
target_have_accents, target_pure_latin = get_target_features(language)
if ignore_non_latin and target_pure_latin is False:
continue
if target_have_accents is False and source_have_accents:
continue
character_count = len(language_characters) # type: int
character_match_count = len(
[c for c in language_characters if c in characters]
) # type: int
ratio = character_match_count / character_count # type: float
if ratio >= 0.2:
languages.append((language, ratio))
languages = sorted(languages, key=lambda x: x[1], reverse=True)
return [compatible_language[0] for compatible_language in languages]
def characters_popularity_compare(
language: str, ordered_characters: List[str]
) -> float:
"""
Determine if a ordered characters list (by occurrence from most appearance to rarest) match a particular language.
The result is a ratio between 0. (absolutely no correspondence) and 1. (near perfect fit).
Beware that is function is not strict on the match in order to ease the detection. (Meaning close match is 1.)
"""
if language not in FREQUENCIES:
raise ValueError("{} not available".format(language))
character_approved_count = 0 # type: int
for character in ordered_characters:
if character not in FREQUENCIES[language]:
continue
characters_before_source = FREQUENCIES[language][
0 : FREQUENCIES[language].index(character)
] # type: List[str]
characters_after_source = FREQUENCIES[language][
FREQUENCIES[language].index(character) :
] # type: List[str]
characters_before = ordered_characters[
0 : ordered_characters.index(character)
] # type: List[str]
characters_after = ordered_characters[
ordered_characters.index(character) :
] # type: List[str]
before_match_count = [
e in characters_before for e in characters_before_source
].count(
True
) # type: int
after_match_count = [
e in characters_after for e in characters_after_source
].count(
True
) # type: int
if len(characters_before_source) == 0 and before_match_count <= 4:
character_approved_count += 1
continue
if len(characters_after_source) == 0 and after_match_count <= 4:
character_approved_count += 1
continue
if (
before_match_count / len(characters_before_source) >= 0.4
or after_match_count / len(characters_after_source) >= 0.4
):
character_approved_count += 1
continue
return character_approved_count / len(ordered_characters)
def alpha_unicode_split(decoded_sequence: str) -> List[str]:
"""
Given a decoded text sequence, return a list of str. Unicode range / alphabet separation.
Ex. a text containing English/Latin with a bit a Hebrew will return two items in the resulting list;
One containing the latin letters and the other hebrew.
"""
layers = OrderedDict() # type: Dict[str, str]
for character in decoded_sequence:
if character.isalpha() is False:
continue
character_range = unicode_range(character) # type: Optional[str]
if character_range is None:
continue
layer_target_range = None # type: Optional[str]
for discovered_range in layers:
if (
is_suspiciously_successive_range(discovered_range, character_range)
is False
):
layer_target_range = discovered_range
break
if layer_target_range is None:
layer_target_range = character_range
if layer_target_range not in layers:
layers[layer_target_range] = character.lower()
continue
layers[layer_target_range] += character.lower()
return list(layers.values())
def merge_coherence_ratios(results: List[CoherenceMatches]) -> CoherenceMatches:
"""
This function merge results previously given by the function coherence_ratio.
The return type is the same as coherence_ratio.
"""
per_language_ratios = OrderedDict() # type: Dict[str, List[float]]
for result in results:
for sub_result in result:
language, ratio = sub_result
if language not in per_language_ratios:
per_language_ratios[language] = [ratio]
continue
per_language_ratios[language].append(ratio)
merge = [
(
language,
round(
sum(per_language_ratios[language]) / len(per_language_ratios[language]),
4,
),
)
for language in per_language_ratios
]
return sorted(merge, key=lambda x: x[1], reverse=True)
@lru_cache(maxsize=2048)
def coherence_ratio(
decoded_sequence: str, threshold: float = 0.1, lg_inclusion: Optional[str] = None
) -> CoherenceMatches:
"""
Detect ANY language that can be identified in given sequence. The sequence will be analysed by layers.
A layer = Character extraction by alphabets/ranges.
"""
results = [] # type: List[Tuple[str, float]]
ignore_non_latin = False # type: bool
sufficient_match_count = 0 # type: int
lg_inclusion_list = lg_inclusion.split(",") if lg_inclusion is not None else []
if "Latin Based" in lg_inclusion_list:
ignore_non_latin = True
lg_inclusion_list.remove("Latin Based")
for layer in alpha_unicode_split(decoded_sequence):
sequence_frequencies = Counter(layer) # type: Counter
most_common = sequence_frequencies.most_common()
character_count = sum(o for c, o in most_common) # type: int
if character_count <= TOO_SMALL_SEQUENCE:
continue
popular_character_ordered = [c for c, o in most_common] # type: List[str]
for language in lg_inclusion_list or alphabet_languages(
popular_character_ordered, ignore_non_latin
):
ratio = characters_popularity_compare(
language, popular_character_ordered
) # type: float
if ratio < threshold:
continue
elif ratio >= 0.8:
sufficient_match_count += 1
results.append((language, round(ratio, 4)))
if sufficient_match_count >= 3:
break
return sorted(results, key=lambda x: x[1], reverse=True)